
Gravity between non-point masses 
 

A gravitational force is a force between exactly two masses. It is calculated using Newton's 
gravitational equation 
                        (1) 

 

 

 

 

 

For a in this equation is used the distance of the centers of mass in both masses. This means 

that for the calculation of gravity it is assumed that the masses of m0 and m1 (Fig. 1) are 

concentrated in the centers of mass and are not distributed in a spatial area V. However, this 

assumption only applies with sufficient accuracy if the dimensions of the masses are small 

compared to their distance a. If the distance is reduced, however, this becomes inaccurate. 

For the calculation of gravity, the forces of particular mass elements dm0 and dm1 must be 

summed up, the gravitational forces of which cannot be regarded as the same due to the 

different distances. The mass elements with a smaller distance will require larger gravitational 

forces, those with a larger distance smaller ones. The summed gravity of all mass elements of 

both masses then gives the total gravity of both masses. For the calculation of the total gravity, 

a fictitious point G will be created in each of the masses as the concentration point of the total 

mass (Fig. 1), which is not identical to the center of mass S of the masses. The point should 

be called the gravitational point of the non-point mass. There is a deviation of the gravitational 

point from the center of mass. The distance of these points G of both masses, ag, is then to be 

inserted as the distance of the masses in Newton's gravitational equation (1). The aim of the 

following calculation is to determine the deviation d = a - ag of the point G. As the method for 

calculating the deviation, a factor f is to be determined (deviation factor), whose product with 

a gives the equivalent distance ag with that the gravitational force by the equation (1) can be 

calculated: 

 

             

The deviation results from this as 

𝑑 = 𝑎 − 𝑎𝑔 = 𝑎 ∙ (1 − 𝑓)                                      (2) 
 

The following simplified conditions are assumed for the calculation: 

 Both masses m0 and m1 are homogeneous with constant mass density δ. 

 The dimension of the mass m0 is negligibly small compared to the distance a, so that it 
can be treated as a point mass. 

 The mass m1 has the shape of a sphere with the radius r. 
 

The sphere with the mass m1 is cut along the x-coordinate in circular disks of thickness dx 
perpendicular to the x-direction, the cross-sectional area s of which is limited by the sphere 
surface. When determining the gravitation between m0 and the mass elements dms on a 
circular disc, force components in the y-direction arise due to the angle between the x- direction 
and the direction m0 - dms. However, these components compensate each other because there 
is an equally large component in the opposite direction for each y-component of gravitation m0 
- dms. The mass of the disk can thus be viewed as if it were concentrated in the center of the 
disk. 
 

It should be noted that this is an approximation. Exactly considered, for this procedure not flat 

disks should be used, but spherical shells, which are drawn with the distance size x in the 

spherical volume. This approach would result in a considerably greater computing effort than 

in the approximation. An alternative approach is the formation of the sum of all gravitational 

forces dms within a disc, which are calculated according to (1) with the hypotenuses of the 

𝐺 =  𝛾 ∙
𝑚0 ∙ 𝑚1

𝑎2
 

                                with 𝛾 = 6,6726 ∙ 10−11 
𝑁𝑚2

𝑘𝑔2
 

𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑎 ∙ 𝑓 = 𝑎𝑔 



triangles from the distance x and the associated y-value. These further calculations will be the 

subject of a subsequent work. In the following illustration, the mass of a disk of thickness dx 

should be regarded as the mass element dm1 of the spherical mass m1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cross-sectional area of a circular disc is 

 

            (3) 

with 

 

          .     (4) 

 

(3) and (4) after algebraic revision lead to 

            (5) 

                 .  

 
As can be easily checked, the cross-sectional area s at the outer limits of the mass m1, that 
is, for x = a - r and for x = a + r, is zero. For x = a, arises                     what was to be 
expected. Outside the mass m1, for             where there is 
    any positive value, negative values for s arise which have no physical content.  
 

For spherical disk is 

            (6) 

and with (5) 

            (7). 

 

 

The solution of the integral          results            , what was to be expected. 

Abb. 1   Punktmasse m1 und Kugelmasse m2 
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Fig. 1  point mass m0 und spherical mass m1 

Spherical disk 

𝑦2 = 𝑟2 − (𝑥 − 𝑎)2 

𝑠 = 𝜋(𝑟2 − 𝑎2 + 2𝑎𝑥 − 𝑥2) 

𝑑𝑚1 = 𝛿 ∙ 𝜋 ∙ (𝑟2 − 𝑎2 + 2𝑎𝑥 − 𝑥2) ∙ 𝑑𝑥 



 

 

The prerequisites for integrating the gravitational force between m0 and m1 are thus present. 

 

The total gravity over all dm1 can be calculated. For this has to put to 

 

            (8) 

 

and at long last with (7) 

 

 

 

 

 

The integral over the limits of the sphere radius r has the form 

 

            (9) 

 

 

 

with the solution 

  

            (10) 

             

 

After the integral limits are set, arises 

 

            (11) 

 

 

Equation (11) is the form of Newton's gravitational equation modified for non-point masses. 

The gravitational point of mass m1 is not yet recognizable in this form. In order to make visible 

the deviation of the gravitational point, the equation must be transformed so that is created an 

invariant form to Newton's equation (1). For this is used the result of the integration of (6), 

which is 

 

 

 

Equation (11) multiplied with 

 

 

 

This leads to 

 

 

 

 

After a further multiplication with 
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𝑥2
∙ 𝑑𝑥 
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you get 

 

            (12) 

 

 

The square brackets contained the square of the reciprocal value of the deviation factor f 

sought at the beginning, with which the value of the deviation of the gravitational point can be 

calculated according to (2) 

 

            (13) 

 

 

 

It can be seen here that the deviation factor f depends on the ratio of the distance to the 

radius of the mass m1. If one calls this ratio k, one finally finds 

 

            (14) 

 

 

 

With large values of k, f approaches to 1: 

 

         . 

 

This means that the deviation for large ratio values of the distance m0 - m1 to the radius of the 

mass m1 becomes negligibly small, so that in equation (1) using the distance of the center of 

mass leads to very precise values for the gravitational force. 
 

For small values of k there are non-negligible deviation values which have to be taken into 

consideration when calculating the gravitational force. 
 

The limit case of the contact of the masses m0 and m1 (that is if k = 1) cannot be treated with 

the method used, it would lead to an infinite gravitation. This can be explained by the fact that 

the concentration of the masses either at the center of mass or at the gravitational point 

assumed for the calculation cannot exist in reality. Masses are not punctiform, they always 

occupy a spatial area V. The assumption V = 0 meant an infinite density. This would 

correspond to a singularity, the existence of which is controversial. In Table 1, which was 

developed with Excel, this is visible in the last lines of the selected areas, in which no values 

are shown. 
 

The following table (Table 1) of the relationships between a, r, k and f shows the magnitude 

and the practical meaning of the deviation. It can be seen that under cosmic scales, in which 

k is usually much larger than 100, there is no need to take them into consideration. The 

deviation is negligible. In the vicinity of the mass m1, the deviation takes on values that cannot 

be neglected. 
 

In some sources, for example, methods for calculating the earth's mass can be found using 

the gravitational value of another mass near the earth, where the earth's radius is used to 

calculate this gravity, which means that the center of gravity is equated with the center of mass. 

This is not correct because a significant deviation must be taken into consideration for the 

mass near the earth (Table 2). 
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Table 1:  Table representation of the deviation factor f as a function of k: 

 

 

 
 

Table 2:  Numerical examples in cosmic sizes and close to earth 

 

The calculation presented here is a theoretical approach, which shows that the concentration 

of the masses in its centers of mass assumed for the calculation of gravitation is not generally 

valid, but must be considered depending on the ratio of the distance of the gravitating masses 

to their sizes. The homogeneity of the density of the masses is an ideal case that is extremely 

rare in the cosmos. 

a r k f a r k f a r k f

1000,00000 1,00000 1000,00000 1,00000 2,00000 1,00000 2,00000 0,91927 1,00100 1,00000 1,00100 0,34441

900,00000 1,00000 900,00000 1,00000 1,90000 1,00000 1,90000 0,90974 1,00090 1,00000 1,00090 0,34128

800,00000 1,00000 800,00000 1,00000 1,80000 1,00000 1,80000 0,89833 1,00080 1,00000 1,00080 0,33787

700,00000 1,00000 700,00000 1,00000 1,70000 1,00000 1,70000 0,88448 1,00070 1,00000 1,00070 0,33412

600,00000 1,00000 600,00000 1,00000 1,60000 1,00000 1,60000 0,86738 1,00060 1,00000 1,00060 0,32993

500,00000 1,00000 500,00000 1,00000 1,50000 1,00000 1,50000 0,84583 1,00050 1,00000 1,00050 0,32518

400,00000 1,00000 400,00000 1,00000 1,40000 1,00000 1,40000 0,81789 1,00040 1,00000 1,00040 0,31962

300,00000 1,00000 300,00000 1,00000 1,30000 1,00000 1,30000 0,78026 1,00030 1,00000 1,00030 0,31284

200,00000 1,00000 200,00000 0,99999 1,20000 1,00000 1,20000 0,72637 1,00020 1,00000 1,00020 0,30397

100,00000 1,00000 100,00000 0,99997 1,10000 1,00000 1,10000 0,63909 1,00010 1,00000 1,00010 0,29038

0,00000 1,00000 0,00000 #ZAHL! 1,00000 1,00000 1,00000 #DIV/0! 1,00000 1,00000 1,00000 #DIV/0!

100,00000 1,00000 100,00000 0,99997 1,10000 1,00000 1,10000 0,63909 1,00010 1,00000 1,00010 0,29038

90,00000 1,00000 90,00000 0,99996 1,09000 1,00000 1,09000 0,62681 1,00009 1,00000 1,00009 0,28847

80,00000 1,00000 80,00000 0,99995 1,08000 1,00000 1,08000 0,61346 1,00008 1,00000 1,00008 0,28638

70,00000 1,00000 70,00000 0,99994 1,07000 1,00000 1,07000 0,59882 1,00007 1,00000 1,00007 0,28406

60,00000 1,00000 60,00000 0,99992 1,06000 1,00000 1,06000 0,58256 1,00006 1,00000 1,00006 0,28145

50,00000 1,00000 50,00000 0,99988 1,05000 1,00000 1,05000 0,56425 1,00005 1,00000 1,00005 0,27845

40,00000 1,00000 40,00000 0,99981 1,04000 1,00000 1,04000 0,54318 1,00004 1,00000 1,00004 0,27491

30,00000 1,00000 30,00000 0,99967 1,03000 1,00000 1,03000 0,51810 1,00003 1,00000 1,00003 0,27054

20,00000 1,00000 20,00000 0,99925 1,02000 1,00000 1,02000 0,48649 1,00002 1,00000 1,00002 0,26472

10,00000 1,00000 10,00000 0,99699 1,01000 1,00000 1,01000 0,44127 1,00001 1,00000 1,00001 0,25557

0,00000 1,00000 0,00000 #ZAHL! 1,00000 1,00000 1,00000 #DIV/0! 1,00000 1,00000 1,00000 #DIV/0!

10,00000 1,00000 10,00000 0,99699 1,01000 1,00000 1,01000 0,44127 1,000010 1,00000 1,000010 0,25557

9,00000 1,00000 9,00000 0,99628 1,00900 1,00000 1,00900 0,43523 1,000009 1,00000 1,000009 0,25427

8,00000 1,00000 8,00000 0,99529 1,00800 1,00000 1,00800 0,42873 1,000008 1,00000 1,000008 0,25283

7,00000 1,00000 7,00000 0,99384 1,00700 1,00000 1,00700 0,42163 1,000007 1,00000 1,000007 0,25122

6,00000 1,00000 6,00000 0,99160 1,00600 1,00000 1,00600 0,41380 1,000006 1,00000 1,000006 0,24941

5,00000 1,00000 5,00000 0,98787 1,00500 1,00000 1,00500 0,40501 1,000005 1,00000 1,000005 0,24732

4,00000 1,00000 4,00000 0,98093 1,00400 1,00000 1,00400 0,39488 1,000004 1,00000 1,000004 0,24482

3,00000 1,00000 3,00000 0,96563 1,00300 1,00000 1,00300 0,38276 1,000003 1,00000 1,000003 0,24172

2,00000 1,00000 2,00000 0,91927 1,00200 1,00000 1,00200 0,36727 1,000002 1,00000 1,000002 0,23753

1,00000 1,00000 1,00000 #DIV/0! 1,00100 1,00000 1,00100 0,34441 1,000001 1,00000 1,000001 0,23086

0,00000 1,00000 0,00000 #ZAHL! 1,00000 1,00000 1,00000 #DIV/0! 1,000000 1,00000 1,000000 #DIV/0!

cosmic examples: deviation for a point mass near the earth

max min k above earth f

sun    1.392.684 1.392.814 1.392.554 1,00015696 1 km 0,29901

earth 12.742 12.756 12.714 1,00007848 500 m 0,28604

moon 3.476 1,00003139 200 m 0,27122

1,00001570 100 m 0,26141

sun - erath 149.600.000 152.100.000 147.100.000 1,00000785 50 m 0,25259

earth - moon 371.500 384.000 359.000 1,00000314 20 m 0,24220

1,00000157 10 m 0,23514

k k 1,00000078 5 m 0,22866

29 earth - moon 107 1,00000031 2 m 0,22086

107 sun - earth 11.741 1,00000016 1 m 0,21546

1,00000008 0,5 m 0,21044

1,00000002 0,1 m 0,20002

1,00000000 0 m #DIV/0!

diameter in km

no oblateness

distance      



 

In practice, for example when calculating the gravitational values of the earth with nearby 

masses, further calculations have to be carried out since the density of the earth is not 

homogeneous. According to PREM (Preliminary Reference Earth Model), a reference model 

developed by Adam M. Dziewonski and Don L. Anderson in 1981 for seismic velocities, 

density, pressure and other physical parameters in the interior of the earth, the density of the 

earth in the inner core of the earth is by a factor up to 13 larger than in the outer layers (Fig. 2). 

 

 
Fig. 2  Earth's density as a function of depth 

 

This can be explained by the fact that in the process of the formation of the earth in its liquid 

phase, the heavy elements (iron, nickel) have moved into the center due to their internal 

gravitation (gravitational segregation). As expected, this leads to a reduction of the deviation, 

because according to this model, 33% of the total earth mass is contained in 17% of the internal 

earth volume. 
 

The execution of the deviations calculations relevant for the earth is the subject of a 

subsequent work, for which goal-oriented research has to be carried out beforehand. 
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